skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Qihang Shi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Security-critical applications on integrated circuits (ICs) are threatened by probing attacks that extract sensitive information assisted with focused ion beam (FIB) based circuit edit. Existing countermeasures, such as active shield, analog shield, and t-private circuit, have proven to be inefficient and provide limited resistance against probing attacks without taking FIB capabilities into consideration. In this paper, we propose a FIB-aware anti-probing physical design flow, which considers FIB capabilities and utilizes computer-aided design (CAD) tools, to automatically reduce the probing attack vulnerability of an IC’s security-critical nets with minimal extra design effort. The floor-planning and routing of the design are constrained by incorporating three new steps in the conventional physical design flow, so that security-critical nets are protected by internal shield nets with low overhead. Results show that the proposed technique can reduce the vulnerable area exposed to probing on security-critical nets by 100% with all critical nets fully protected for both advanced encryption standard (AES) and data encryption standard (DES) modules. The timing, area, and power overheads are less than 3% per module, which would be negligible in a system-on-chip (SoC) design. 
    more » « less
  2. Security-critical applications on integrated circuits (ICs) are threatened by microprobing attacks that extract sensitive information through focused ion beam (FIB) based milling. Existing countermeasures, such as active shield, analog shield and t-private circuit, have proven to be inefficient and provide limited resistance. In this paper, we propose a FIB-aware anti-probing physical design flow to reduce the vulnerability of security-critical nets in a design. Results show that our proposed technique can reduce the vulnerable exposed area on critical nets to probing attack by 90% in AES and DES modules with only 5% area overhead. 
    more » « less